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Abstract: In recent years, there has been a transformation in the value chain of different industrial
sectors, like the electricity networks, with the appearance of smart grids. Currently, the underlying
knowledge in raw data coming from numerous devices can mark a significant competitive advantage
for utilities. It is the case of the Advanced Metering Infrastructure (AMI). Such technology gets user
consumption characteristics at levels of detail that were previously not possible. In this context, the
terms big data and data analytics become relevant, which are tools that allow using large volumes of
information and the generation of valuable knowledge from raw data that can support data-driven
decisions for operating on the grid. This paper presents the results of the big data implementation
and data analytics techniques in a case study with smart metering data from the city of London.
Implemented big data and data analytic techniques to show how to understand user consumption
patterns on a broader horizon, the relationships with seasonal variables identify behaviors related to
specific events and atypical consumptions. This knowledge helps support decision making about
improving demand response programs and, in general, the planning and operation of the Smart Grid.

Keywords: AMI; big data; clustering; data analytics; data-driven decisions; load forecasting; machine
learning; smart grids

1. Introduction

A smart grid is an electrical network that includes digital and emerging technologies to supervise
and manage the operating processes for the transport of electricity from generation sources to
end-users [1]. The main aim of smart grids is to optimize operational capacity as well as integrate
new technologies and renewable energy sources to improve efficiency, reliability, and safety while
reducing the environmental impact with economic and social benefits. Among the new applications
incorporated by smart grids are emerging technologies for energy storage, smart metering integration,
distribution automation for rapid failure detection, and real-time demand response [2,3].

Smart grids also promote the integration of new information and communication technologies
(ICT) to achieve bidirectional communications and automated control. This combination of traditional
and new digital technologies adds intelligence to the network since it increases operational capacity to
acquire, communicate, process, analyze, and protect data automatically. Such intelligence allows the
operator to have a better situational awareness of the network to enhance control by improving the
real-time response to variations that may arise on the grid, which means a contribution towards the
interoperability of the grid for the safe and reliable exchange of information [4]. However, a smart grid
is technologically and economically viable only if the stakeholders involved can overcome several
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challenges in the areas of available energy resources evaluation, improvement of control, management,
and monitoring systems. The latter includes a detailed observation of the operation and electricity
demand, which implies establishing advanced metering systems that allow constant monitoring of
the energy supply (utility) side and demand (client) side. In this regard, the incorporation of big data
systems as a technological option offers the possibility to analyze data at nearly all stages in the energy
supply process [5].

Since the smart grid incorporates significant processes like generation, transmission, and
distribution of electricity, the installation for each of these processes includes a wide variety of
equipment like generators, turbines, transformers, switches, current, and potential transformers,
among others. The final goal of using ICTs is to measure, monitor, and even control every point in the
system. It means all assets can be governed and managed by intelligent devices from generation to
consumption, and is optimized based on environmental, social, institutional, or economic restrictions.
Thus, the application of ICTs in the smart grid could collect large amounts of data, which also demands
the use of big data and data analytics approaches [6].

Experts from McKinsey Global Institute Energy evaluated 150 use cases from several companies
resulting in a full study about the impact of data analytics on them. Their reports indicate that
the energy sector is one of the nine industries with the most positive potential implications of big
data and data analytics. According to that study, utilities potentially have many areas of benefit
around incorporating big data and data analytics [7]. For instance, work from Tu et al. suggests
big data applications for wide-area situational awareness (perceiving, understanding, and projecting
events in the system), state estimation, classification, and detection of events for power distribution
systems [8]. According to Schuelke-Leech et al., the main aspects in which big data research for smart
grids could fit are generation, transmission, distribution, billing (interfaces with the client), markets,
and regulation [9]. In particular, Zhou et al. mention four sectors around big data applications:
management on the generation side, microgrids and renewable energy management, collaborative
operations and asset management, and demand-side management [10]. They believe that the most
important focus of big data applications for smart grids are energy (savings achieved with big data),
exchange (integration with other sources), and empathy (satisfy needs). They call this the “Big Data
3E.” Other applications mentioned by the authors are validation and calibration of plants, demand
projection in the short term, demand response, estimation of parameters for distribution systems, and
security and protection systems.

The arrival of big data applications for the smart grid brings benefits for both utilities and clients.
Big data provides the opportunity to monitor, correct, and better integrate smart grid technologies,
extract knowledge from data flowing through the grid, and further generate value and profits for
utilities and customers [9]. It can imply notable benefits like increased grid stability and reliability, the
efficient use of assets, an improved experience, and customer satisfaction. Likewise, the management of
data generated from different components of the grid is fundamental for the successful implementation
and operation of every process in the network [8].

One of the most critical technologies in the deployment of smart grids is the advanced metering
infrastructure (AMI). This technology has allowed, in recent years, the installation of a large number
of smart energy meters and other measurement terminals on the end-user side [10]. Smart meters
produce data every 15 min (or less), which means that traditional databases and statistical analysis are
no longer enough to extract the real value inside raw data coming from such meters. In addition to
operational data, there are also other data sources to manage, such as the energy market, geographic
information systems (GIS), or demographic data. This whole scenario allows identifying an increasing
availability of high volumes of AMI data, the rise of advanced technologies for information analysis,
and a strong need to make informed decisions to improve the planning and operation of the grid.

This work finds its purpose in the confrontation of two clear challenges in the panorama previously
exposed. First, there is the use of big data techniques for the handling and processing of large volumes
of raw data from smart meters. These devices generate data at time intervals that previous technologies
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could not offer. Second, the use of data analytics techniques to process such raw data and transform it
into knowledge that adds value to the company or its customers.

The case study implemented big data and data analytics techniques with energy consumption
information from 5567 London households. The households participated in the low carbon London
project between 2011 and 2014. Approximately 1100 customers underwent a dynamic time of use
(dToU) energy price scheme in the 2013 year. Our work consisted of integrating a big data architecture
and the use of data analytics techniques for advanced metering infrastructure (AMI) data analysis. The
latter stage focused on generating value for the utility or its clients through different tasks: analyzing
consumer behavior, energy consumption forecasting, and identifying correlations with exogenous data
that may lead to better customer characterization and better grid planning and operation.

The following section presents a compilation of several applications developed around big data
and data analytics for AMI data. The subsequent chapter presents the case study implemented,
describing the data sources, the big data framework, and the data analytics techniques implemented.
Lastly, the visualization and access stages account for how advanced information analysis can deliver,
beyond a superficial description, relevant knowledge for utilities and their clients.

2. Big Data and Data Analytics for AMI

One essential component of the smart grid is the advanced metering infrastructure (AMI)
technology since it provides utilities with a considerable amount of new information, which was not
available with previous measurement systems. Data coming from AMI Smart Meters offer valuable
information that utilities can use to optimize business operations or even customer service. AMI
systems also provide a pervasive communication infrastructure for constant monitoring and remote
control of the grid components [11].

The extensive use of smart meters allows all the stakeholders involved in the operation of the
smart grid to obtain benefits in the execution of their roles, and for the client to actively participate
in the electric energy value chain, which generates new markets and possibilities for business in a
smart grid [12]. These features show AMI systems as a bidirectional enabler for awareness of energy
consumption in the grid. On one hand, the utility can know the customers’ consumption patterns in
near real-time. On the other hand, the customer becomes an active agent who knows his consumption
behavior in detail and can actively impact network management, as is the case of energy efficiency or
demand response programs.

With AMI, it is possible to do continuous monitoring of customer consumption, event occurrence,
and power quality, as well as open possibilities for constant interaction between users and utilities.
One of the most significant consequences of this type of system is the arrival of a high volume of data
that has to be processed. According to data from US Energy Information Administration, the number
of AMI devices went from 49.1 million to 150.8 million between 2014 and 2017 in which their significant
increase was allocated to residential and commercial buildings [13,14].

This data growing extents the acknowledge about the consumption patterns of customers
improving demand response programs, specifying better tariff schemes, and monitoring other details
of the network. The large volume of available information requires dedicated platforms and intensive
algorithms for processing.

A study by Alahakoon D. presents an overview of the smart metering process, starting from AMI,
going through advanced analytics, and then reaching all smart grid stakeholders [15]. The author
states two perspectives from stakeholders’ point of view: one seeks to offer some benefits from data
mining and the other aims to fulfill an established need through data analytics. The same author
also presents a more comprehensive study proposing the critical elements of data analysis from the
smart meters: data capture, transfer and storage, technology and algorithms, and stakeholder-related
applications [16]. The work puts a particular emphasis on the challenges faced with the arrival of
big data and the increase of platforms based on cloud processing such as real-time data processing,
regulation of pay-per-use price models, and even security and privacy issues. Wang et al. also present
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a review of advanced data analytics for smart meters [17]. The paper focuses mainly on the collection
of descriptive, predictive, and prescriptive analytical work for three main applications pointed out by
them: load analysis, load forecasting, and load management.

The work developed around data analytics applications for data coming from smart meters
generally proposes two perspectives: the processing platforms/architectures and the methods and
algorithms available to process the data.

On the one hand, regarding processing platforms Shyam et al. present Apache Spark as a platform
to store and run analytics for applications such as automatic demand response, pricing, and real-time
data streaming [18]. Liu et al. propose a hybrid solution form smart meter data analytics, combining
Spark or Hive for data processing and MADlib, which is a machine learning toolkit for in-database
analysis [19]. Similarly, another study focused on the performance and efficiency of some advanced
data analytics platforms [20]. The authors proposed three stages in the study. The first one is the
development of a performance benchmark to evaluate different platforms. The second stage offers a
solution to the problem of data availability by taking into account privacy and security aspects. Lastly,
the authors implement the benchmark for evaluation purposes. The evaluation shows five advanced
data analytics platforms: Matlab, MADlib, System C, Hive, and Spark Streaming. They propose an
algorithm to generate large realistic datasets from a small volume of real data. The work from Daki
et al., also presents different concepts on data management in smart grids [21]. In their review, the
authors propose an architecture for customer advanced data analytics and show various stages for
data processing like data sources, integration, storage, analytics, and visualization. Stoyanov et al.
developed a study to capture and consult data from Hadoop (Hive) from smart meters. The authors
highlight that a centralized model is better if the volume of data is not considered high, i.e., the limits
of modern hard disks [22].

On the other hand, several authors have focused on advanced data analytics approaches for
process smart metering data. Jha et al. show several advanced data analytics developed on AMI data
implemented in the Puducherry Smart Grid Pilot project. In that project, they make data validation,
identify meter tampering and missing information, perform energy audit and accounting, and identify
peak demand and consumer profiles [23]. Work from Yu et al. shows an analysis of AMI data using
fuzzy systems in the Tatung University campus. They use a combination of Cascading Style Sheets
and Google chart API to support enhanced reading and real-time visualization. The result of this work
is the integration of data from smart meters into a web platform for consistent visualization and the
presentation of basic statistics and measurements [24]. Although many of these analyses have been
done in time-domain mainly, other authors use a frequency domain methodology to characterize and
analyze load profiles [25].

Regarding load profile analysis, the work by Hayn et al. performs a characterization of the
consumption profiles of the clients and carry out socio-demographic studies to evaluate the influence
of specific technologies and appliances on their consumption patterns [26]. Ramos et al. developed a
framework to characterize medium voltage (MV) users using knowledge discovering from databases
(KDD) and identifying the load profiles. The proposed methodology includes pre-processing, clustering
algorithms, selection, segmentation, and classification [27]. Work from Kojury-Naftchali, is focused on
the self-organizing map (SOM) to obtain the characterization of the customer’s electricity consumption
behavior [28]. Besides the evaluation of customer consumption patterns, some works have increased
the level of detail to reach load disaggregation to identify individual uses of some domestic appliances
and evaluate their electric consumption footprint. For example, the non-intrusive load monitoring,
implementing hidden Markov models, and deep learning or deep sparse coding algorithms [29–31].

One of the most studied applications of AMI systems is load forecasting. Forecasting is a type of
regression aimed to predict the future value of a variable given its past values. Such autoregressive
models may or may not consider additional or exogenous variables that share the same time-series [32].

The dynamic electricity market depends on the adequate load forecasting for appropriate
demand-side management and planning as well as advanced analysis of external data that influence
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the behavior of customers and the electricity market. Such actions guarantee efficiency and savings for
both utilities and customers.

There are several reviews of different linear and nonlinear models for forecasting tasks [33,34].
Hayes et al. suggest that nonlinear models have a better performance against linear regressors for
predicting this type of variable like the Nonlinear AutoRegressive eXogenous model (NARX) [35].
Authors in the literature use different approaches for energy consumption forecasting. Most of them
use machine learning algorithms. Among the most common algorithms to perform load forecasting,
we uncovered the random forest estimation [36,37], autoregressive models, and neural networks [38].
Some works use feature selection combined with wavelet transform or differential evolution algorithms
for short-term load forecasting [39,40]. Ali et al. use singular value decomposition (SVD) to perform
short term load forecasting [41]. Aman et al. also use machine learning methods to forecast energy
consumption patterns in a university campus microgrid, and mention possible applications for energy
consumption planning and conservation [42,43]. Recent work from Taieb S. et al. present a hierarchical
probabilistic approach for electricity forecasting using the MinT approach [44].

Other authors have included external data sources for their works. For example, Liu et al. study
load forecasting by implementing a Map/Reduce framework. The authors cluster geographical data
according to weather conditions [45]. The work from Cui et al. reviews the concept of prosumers
(simultaneous producer and customer) and the impact of social media on their generation/consumption
patterns [46]. Chen et al. also study the short-term load forecasting using deep residual networks,
which, when using two public datasets, showed that it is more accurate and robust compared to other
state-of-the-art forecasting models [47].

Another crucial aspect of the deployment of AMI is the possibility of active participation of
customers in smart grids. For example, Kwac et al. present a methodology for demand response
targeting by formulating optimization techniques to solve a stochastic knapsack problem (SKP) based
on high-resolution data collection [48]. Mogles et al. analyzed the effect of personalized messages
through in-home displays about consumption patterns. This work shows how, with adequate customer
involvement, energy savings went up to 22%, and the energy literacy went from 0.52 to 1.28 on a scale
from zero to four [49]. Work from Tascikaraoglu, A. presents a compilation of works focused on AMI
data-driven demand response, which highlights the use of Artificial Neural Networks (ANN), online
clustering, and distributed data analysis [4].

AMI data analysis applications do not only focus on identifying demand profiles, customer
classification, or forecasting tasks. For example, Gómez Lopez et al. make an overview of AMI data
potential applications for power distribution loss reduction [50]. Work from Botev et al. presents a
data-driven model to identify possible sources of non-technical losses from AMI data. Their method is
based on spectral analysis of periodic patterns, using features in the frequency domain. They highlight
the model’s ability to perform online analysis [51]. One of the most recent surveys on the subject
presents a review of machine learning techniques to detect energy theft using smart metering data. The
work suggests that these techniques can be simple (supervised or unsupervised learning) or hybrid.
The later technique combines any of the above with more sophisticated methods like extreme learning
machines, genetic support vectorial machines, and Boolean rules fuzzy logic SVM. The authors point
out how challenges in energy theft detection have not adequately been addressed yet. Such challenges
can be data imbalance (normal samples in the same range), Big Data’s 3V (volume, velocity, and
variety), feature description and selection, and non-malicious factors (change of residents or appliances,
or seasonality) [52].

The privacy of customer data is also a significant challenge faced by developments around AMI
data, which are consistently available with precise details about their consumption habits. In this
sense, Foreman et al. present a methodology to anonymize customer data with smart meters installed
on their properties, while preserving the billing services and automatic connection to the centralized
system of a utility [53].
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Considering emerging technologies, Bereş et al. present a study of several tools based on cloud
computing for data analytics. The work mentions the benefits of considering aspects like security,
availability, and reliability. Moreover, they show the possibility to process data in real-time safely [54].
Yan et al. also present a fog computing model to process AMI data. This approach mentions
several challenges like expansion flexibility, efficiency, reliability, and high costs associated with cloud
computing for AMI applications [55].

Next, Table 1 presents an overview of some works related to AMI data applications mentioned
so far.

Table 1. Works on Advanced Metering Infrastructure (AMI) data applications.

AMI Application Related Works

AMI data processing platforms. [18–20,22]
Linking emerging technologies in AMI data processing. [54,55]
Identification of consumption profiles from AMI data. [23,24,26,28]

AMI data for loss reduction. [51,52]
AMI data for demand response programs. [4,48,49]

Load forecasting using AMI data. [27,38–46]
Load profile disaggregation (identification of devices and household

appliances connected to the network) [29–31]

Although Table 1 presents several applications based on AMI data, it is necessary to have a
development framework with an adequate methodology to transform raw AMI data into usable
knowledge according to the required application. The National Institute of Standards and Technology
(NIST) proposed a reference architecture framework for the development of big data projects [56].
Considering the surrounding concepts of big data, not only for AMI projects but for any application,
we used the NIST reference architecture framework.

Big Data Reference Architecture

Reference architectures generally serve as a template for developing solutions in an orderly
manner in a specific field and may be used for comparison and alignment purposes. The architecture
proposed by NIST brings together common elements found in different documented case studies
around the world. The reference architecture presented in Figure 1 also includes general considerations
on big data, its implications, and requirements [57].

Five primary roles compose the reference architecture.

1. System Orchestrator: it defines and integrates the required data application activities into an
operational vertical system. It provides the overarching requirements about business ownership,
governance, data science, and system architecture.

2. Data Provider: it introduces new data or information sources into the big data system, either
online or offline. It is also responsible for data persistence (hosting), data scrubbing (remove PII –
personally identifiable information), metadata (for history and repurposing), policy for others’
access to data, and query without transferring (sometimes).

3. Big Data Framework Provider: supplies a computing infrastructure while protecting the privacy
and integrity of data. Some resources or services used by the big data application provider
are infrastructure framework (networking, computing, storage, environmental), data platform
(physical storage, file systems, logical storage), and processing (software support for applications).

4. Big Data Application Provider: it executes a life cycle to meet security and privacy requirements. It
also develops system orchestrator-defined requirements, mechanisms to capture data, preparation,
analytics (discovery for finding value in big volume datasets), visualization (exploratory,
explicatory, or explanatory), and access to the results of the data system.
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5. Data Consumer: includes end-users or other systems that use the results of the big data application
provider: search and retrieve, download, analyze locally, and reporting and visualization.

Figure 1. The National Institute of Standards and Technology (NIST) big data reference architecture.
Source: Reference [58].

The data consumer role is in charge of understanding the results. For this, the tasks of visualization
and access to the data developed by the application provider are of great importance. On the one
hand, visualization allows the results of the analysis carried out to be communicated to an audience
to facilitate interpretation and understanding [58]. On the other hand, the access stage allows the
information to be delivered to the data consumer efficiently according to their activity or job [59,60].

In a utility, there can be different types of data consumers including developer engineers,
operational coordinators, decision-makers, and others. Depending on their role in the operation of
the utility, each one requires different access to information aggregated or disaggregated at a certain
level. An operation coordinator may require detailed operational data about events or clients, while
an executive officer may require more comprehensive results on the performance and economy of
the utility. Visualization and access to the correct type of information facilitate the communication of
results in the way that each individual requires [61].

One of the chapters of the framework presented by NITS documents 51 use cases in industries
referring to big data and data analytics applications [62]. From all 51 documented use cases, the only
one related to smart grid and AMI data is called “Machine Learning for Demand Forecasting in Smart
Grids.” This case studied machine learning methods for energy forecasting consumption patterns
in the USC campus microgrid, which could be useful for energy planning and conservation [42,43].
The case study presented by NIST shows an increasing need in the energy sector for implementing
applications related to data processing and analysis to improve the operation of the smart grid.

So far, we presented an overview showing the importance of AMI deployment within smart grids,
given the variety of applications that can potentially generate value for a utility and its customers. A
review of some developments focused on the processing of a large volume of AMI data generated by
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smart meters using big data and data analytics techniques. The model formulated by NIST, described
above, stands out as a development framework for big data applications.

As motivators for this development, it is necessary to consider the importance of the role of AMI in
the smart grid, the availability of a high volume of AMI data, and the growing need for developments
focused on analysing this raw data. In this way, the main objective of this work is to implement an
exploratory study case that allows us to demonstrate the potential of big data and data analytics
techniques applied to AMI data processing.

According to the roles depicted by the architecture, for the case described in this paper, there is a
big data framework provider in charge of implementing the information value chain. In addition, a
data provider includes mainly AMI data coming from smart meters and some exogenous data. The
objective is to develop an application acting as a big data application provider that covers the entire
process, from collection to final access so that utilities can use that data as the data consumer.

The next section describes the case study in detail. The case study presented is exploratory,
i.e., the aim was to explore the benefits of different techniques (or at least some) of data analytics
techniques applied in an AMI dataset to extract knowledge from raw data. This exploration includes
implementing machine learning algorithms for descriptive and predictive analysis. However, a utility
can require implementing more sophisticated analytical techniques for a very particular purpose, e.g.,
the identification of consumption patterns of a customer sector, the financial evaluation of one of its
demand response programs, or the identification of losses at different points in the grid.

3. Case Study: Big Data and Data Analytics for Smart Meters

An exploratory case study used smart metering data published by the London Datastore from
the Mayor’s Office of London. Data was collected by UK Power Networks as part of the Low Carbon
London Program to investigate the impact of different low carbon technologies in the London electricity
distribution network [63]. For this purpose, UK Power Networks installed around 5500 smart meters
in the city of London. The meters recorded energy consumption at 30-min intervals between 2011 and
2014. During 2013, a group of 1100 households participated in a Demand Response Program using a
Dynamic Time of Use tariff (ToU Group). This group had a variable electricity tariff throughout the
day: high (67.20 GBX/kWh), low (3.99 GBX/kWh), or normal (11.76 GBX/kWh), while other households
had a uniform rate of 14.228 GBX/kWh (Std Group).

3.1. Data Sources

Three sources of data were collected (meter data, weather data, and holiday data). The gathered
data consisted of two parts: meter records and customers’ tariff. The first and most significant part
contains around 160 million records from 2011 to 2013. The size of the raw dataset was near 11 GB,
which includes the following fields.

• Unique household identifier,
• Tariff program of each household (Standard or Dynamic Time of Use),
• Energy consumption (kWh per half hour) of each household,
• Date and time,
• CACI Acorn group, and
• CACI Acorn category.

Acorn is a geo-demographic segmentation of the UK’s population. This classification segments
households into six categories, 18 groups, and 62 types considering social factors and population
behavior [64]. Acorn classification provides a general understanding of the attributes of a
neighborhood by classifying postcodes into a category, group, or type. Acorn categories are affluent
achievers, rising prosperity, comfortable communities, financially stretched, urban adversity, and
non-categorized customers.
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The second part contains the detail of the tariff applied to ToU customers throughout each day of
2013. More information is available at the London Datastore Website [65].

External datasets from weather and holidays allowed us to explore the correlation between energy
consumption and exogenous variables.

• Weather data. It came from two datasets for climatic variables like temperature, humidity, pressure,
visibility, sunset, and sundown, among others. The first dataset, with daily granularity, includes
30 climatic variables. The second dataset has 1-h granularity, detailing 10 weather variables. Both
datasets, collected from the Dark Sky Company API, included data between the years 2011 to
2014 [66].

• Holiday’s data. A list of the official UK holidays from 2011 to 2014, was collected from UK
Government Digital Service [67].

3.2. Big Data Framework

The Big Data Laboratory of the National Institute of Electricity and Clean Energies (INEEL) played
the role of big data framework provider, depicted in Figure 2.

Figure 2. Data framework allocated for the case study.

The Apache Hadoop processing cluster consists of one master unit and two slaves. Each unit has
Xeon E5-2640 processors with 16 cores, 2TB × 7 hard disks, and 128 GB RAM. All of them run Linux
OS. The cluster also has big data tools such as:

• Apache HBase, the Hadoop open-source, non-relational, NoSQL, and distributed database [68].
• Apache Spark, an analytics engine for large-scale data processing [69].
• Apache Zeppelin, a web-based notebook environment that enables interactive data analytics to

run different programming languages [70].

Furthermore, a workstation was networked to the processing units to provide an interface to
access the master and slave nodes in the cluster.

4. Methods for the Big Data Analytics Application Development

The application implementation process consists of four main stages: data collection, data
preparation, analysis, and visualization. We present the following.
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4.1. Data Collection

The data collection stage implemented a Zeppelin notebook, running a PySpark interpreter to
store all data collected into Spark data frames. A Spark data frame is a distributed set of data organized
into columns, similar to a relational table. These data frames allow scalability of computation in
processing clusters and integration with all big data tooling and infrastructure via Spark [71].

The raw data available in comma-separated values (CSV) files were imported into the processing
cluster in eight data frames, as presented in Table 2.

Table 2. Initial data frames generated from data sources.

Data Frame Name Description Number of Records

uk_hd UK bank holidays 25
acorn_cats Acorn categories and population percentage 6

acorn_groups Acorn groups and their categories 18
information_households Information about household’s meters 5517
weather_daily_darksky Weather information per day from 2011 to 2014 882

weather_hourly_darksky Weather information per hour from 2011 to 2014 21,165

tariff_ts Tariff timeline in a 30-min interval for ToU
users through 2013 17,518

hh_ts Time series - household’s consumption per
half hour 165,809,909

4.2. Data Preparation

Data preparation is also called the ETL stage from big data lifecycle: extraction (by collecting
data), transformation (by curating and preparing data), and loading (by saving data warehouse into
HBase). The ETL process begins with raw data, which is the basis for building a data warehouse.
The construction of the warehouse included two processes: filtering and data imputation. Filtering
to discard incomplete records that cannot be estimated or that are not suitable to be considered in a
specific metric (e.g., the total month consumption value cannot be calculated with incomplete records
for several days in a month). Data imputation to complete missing data, when possible (e.g., a missing
energy value between two time stamps for a meter, when the immediately preceding and next time
instants are available).

In addition to data filtering and data imputation, it was also necessary to establish correlations and
groupings between the different data sources or analyzing data with different granularity. Therefore,
a data warehouse included different data frames, according to their type, granularity, or the kind of
analysis to be performed.

Since our study was exploratory, we built a data warehouse with different time granularities in
addition to the original raw data time-base (30 min): half-hourly, hourly, daily, weekly, and monthly.
We also created data frames with information corresponding to the ACORN groups and the individual
characteristics of the clients.

The initial database contained around 167 million records distributed in 8 data frames. The
consolidated data warehouse stored about 676 million records distributed across 29 Spark data frames
of different combinations of time granularities and grouping criteria.

This redundancy of data is then a consequence of the use of big data tools and facilitates data
analytics. Therefore, it is possible to deal with complete datasets instead of a sample of data, as is done
in some statistical approaches.

Although Spark data frames lie in memory, it is possible to assign some persistence of data frames
on the hard disk. Nevertheless, the most appropriate way, especially if persistent access to the data
is required, is to save them into the Hadoop File System (HDFS) permanently. For this purpose, the
entire data warehouse was migrated to HBase using Apache Phoenix [72].



Sensors 2020, 20, 3289 11 of 27

4.3. Data Analytics

Once we adequately transformed and stored the necessary data with different granularities, an
initial descriptive analysis was necessary before using different algorithms to perform predictive
analysis. We performed a descriptive visual analysis by connecting the data stored in the processing
cluster to Tableau visualization tools [73].

4.3.1. Descriptive Analytics

For this task, we depicted a graphic description of data with Tableau to understand the usage of
energy by different user categories and time granularities.

For example, Figure 3 shows the energy consumption per hour of a household with standard
tariff (Std) on 13 April 2013.

Figure 3. Example of a household energy consumption with a standard tariff.

The case study considered five Acorn categories: affluent achievers, rising prosperity, comfortable
communities, financially stretched, and urban adversity. However, rising prosperity, comfortable
communities, and financially stretched groups presented reasonably similar trends. Therefore, for this
study, these categories were grouped as a comfortable category. The new classification, referred in this
paper as grouped categories, correspond to:

• Affluent, for all households classified as acorn affluent achievers
• Comfortable, grouping the households from rising prosperity, comfortable communities, and

financially stretched categories
• Adversity for households belonging to the urban adversity acorn category.

Figure 4 presents an example graph with the average energy consumption for each day of August
2013 for each grouped category.

Figure 4. Average energy consumption for each day of August 2013 for each grouped category.
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We analyzed consumption patterns for each grouped category at different time horizons: hourly,
daily, and monthly. We also made a differentiation between consumption on workdays and holidays.
For each category and time horizon, we estimated average, maximum, and minimum consumption
and compared users with Std and ToU tariffs.

In addition to the analysis of the consumption patterns of users and categories, we included
information about exogenous variables such as weather and seasons. We analyzed the effect of
variables such as temperature, daylight hours, and seasons of the year on the consumption habits of
each grouped category.

Section 5 presents the results and some interesting findings from this stage of descriptive analysis.
This first stage of descriptive analysis allowed us to identify different characteristics of electricity
consumption in households and their categories and some relationships with other variables such as
temperature and light hours. However, the power of data analytics extends its scope from the descriptive
to a predictive approach, as is the case of machine learning tasks for clustering and forecasting.

4.3.2. Predictive Analytics

The main goal of predictive analytics is to use current and historical information to find future
patterns or characteristics not explicit in the available information [74]. In this work, we implemented
two main tasks of predictive analytics: clustering and forecasting.

Clustering

Clustering is a machine learning task aimed to group sets of objects with similar characteristics [32].
In this case study, the households were already grouped into acorn categories and then gathered into
three global categories (affluent, comfortable, and adversity), called grouped categories. Nevertheless,
such geo-demographic classification segments users according to characteristics like household income
and size, wealth, or social grade, but does not consider the electricity consumption patterns of each
household [64]. We propose the implementation of a clustering algorithm to assign three new categories
to the data: high, medium, and low, considering only electricity consumption patterns of customers,
leaving aside their geo-demographic characteristics. This new categorization of users is not intended
to be better or to exclude the existing segmentation, but is rather complementary.

Therefore, we now have users segmented considering two different criteria. On one hand, the
criteria includes their geo-demographic characteristics and, on the other hand, the criteria involves
their consumption patterns. For example, users from the adversity category (geo-demographic based)
intuitively should match those users assigned by our clustering algorithm to the low consumption
category (energy consumption-based). However, this expectation is not mandatory, e.g., adversity
users with high energy consumptions. The possibility of having two user segmentation criteria that
may or may not coincide is useful when identifying possible atypical behaviors. The evidence of
possible atypical behaviors might be one of the advantages of having complementary grouping criteria.

We used K-means as a clustering algorithm. K-means proposes that a set of objects has as many
centroids as groups/categories require. Each object is assigned to the group with the closest centroid to
the object’s coordinates. Next, Equation (1) describes the objective function of the K-means algorithm.

J =
k∑

j=1

n∑
i=1

min
µ j∈C

(
xi − µ j

2
)
, (1)

where k is the number of clusters, n is the number of samples x, and µ j is the centroid of each cluster.
The selected value of k = 3 corresponds to the expectation of identifying three household segments,

which is similar to the three grouped categories presented.
There were two possible options considered in the algorithm implementation: the Spark MLlib

library [75] and the Python Scikit-learn library [76]. While the first one requires a distributed processing
environment, the second is better for applications that, by their nature, do not necessarily require
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distributed computing. The Scikit-learn library was more appropriate for this case study, considering
that the amount of elements to be grouped is small (near 5500 households). We do not need to make
use of distributed computing resources, at least, for the clustering task of this specific case study. The
MLlib library is more appropriate for a more significant amount of records. Moreover, it was used
TSlearn, an extension of Scikit-learn, specialized in the treatment of time series data [77].

The main input arguments for the k-means clustering algorithm in TSlearn are the number of
clusters (k = 3) and the data set that will be grouped (5509 timelines with one for each household). These
timelines have 24 measurements including one for each hour of the day, which forms a consumption
pattern of each client over a day.

Identified clusters were denominated as high, medium, and low, referring to the electricity
consumption of each group of clients. For example, Figure 5 presents a graph with the average energy
consumption for each day of August 2013 for each TSlearn category.
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For this clustering exercise, we run 50 experiments to guarantee repeatability since the assignment
of centroids of each initial cluster was random at the beginning of each experiment.

Once each household had an assigned group, it was possible to make comparisons between the
grouped categories and those found in this work, which is now called TSlearn categories. The results
of the clustering task are presented later in Section 5.

Forecasting

As presented before in Section 2, forecasting is one of the main applications of AMI data analytics.
A critical task of predictive analytics addressed in this work is forecasting.

For the forecasting application, this work uses the Nonlinear AutoRegressive eXogenous model
(NARX) model, expressed as follows.

ŷ(t + k) = f


ŷ(t + k− 1), . . . , ŷ(t + k− p),

x1(t + k− 1− d1), . . . , x1(t + k− d1 − q1), . . . , xm(t− d1),
. . . , xm(t− dm − qm + 1)

 (2)

where ŷ is the variable to forecast, f is the estimation function, p is the autoregression order, q is the
order of the exogenous inputs, and d represents a time delay in the exogenous inputs if it is necessary.

The estimation function f represents an estimator with a learning capacity. Some conventional
estimators in machine learning are artificial neural networks, decision trees, and random forests [75].
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On the one hand, artificial neural networks (ANN) are assemblies of single neurons that acquire
knowledge from experience with historical data. The assemblies establish their learning parameters to
predict a future value with the least possible error, which is similar to the learning process of a real
neuronal system. On the other hand, decision trees are trees whose ramifications represent possible
decisions made according to the characteristics of each record in the available data. In the end, after
the decisions are taken based on the available characteristics, each record is assigned a final value or a
class label depending on the machine learning application [78].

Due to their implementation simplicity, decision trees have evolved into more robust versions
as random forests, which are ensembles of decision trees. A random forest operation proposes that
several weak learners join to form a robust learner to increase predictive power and robustness for more
extensive and more complicated datasets. These estimators have become widely used for predicting
energy consumption [36,37].

For this case study, the estimation function ( f ) was a random forest. The variable to be forecasted
(ŷ) was the energy consumption, and the environmental temperature was the exogenous input (x),
given the high relation with the electricity consumption identified in the previous sections. The
forecasting was made recurrently with hour granularity. The consumption of the previous 24 h
defined the consumption value of the following hour, i.e., ŷ(t + k)

∣∣∣ k = 1 . It defined the order of the
auto—regressor p = 24 and the exogenous inputs q = 24.

The prediction was made recurrently for each hour of the day, each grouped category, and each
meter. For this task, we used data for 2013. A total of 70% of the data was used for model training
and 30% was used for testing. The library used for the forecasting algorithm was fireTS, which is an
extension of Scikit-learn specialized in the prediction of time series [79].

The results of the clustering task are presented later in Section 5.

4.4. Visualization and Access

Data visualization and access support information analysis of the results presented as part of the
information value chain presented in the NIST framework in Figure 1. For this work, part of the data
used and generated corresponds to development stages like ETL and data warehouse building. In
contrast, another part focuses on the presentation and visualization of results.

Since this study case was exploratory, the visualization of the data focused on the presentation of
the results obtained for the two types of analytics addressed (descriptive and predictive analytics). We
designed Tableau dashboards [80] to present results as detailed as the available data allowed. Its design
aimed to provide global access for readers to all obtained results and not only for a specific profile,
as previously mentioned in Section 2. For this case study, we developed five Tableau workbooks
containing several dashboards to visualize the results.

The first two workbooks correspond to the results of descriptive analytics. They include a set of
dashboards that display electricity consumption by customers with different time granularities (hour,
day, month, and year) and a section to visualize the difference in consumption between workdays and
holidays. Dashboards also include visualization of consumption and payments differentiated by tariff
(Std or ToU).

The last three books condense the results of predictive analytics, which result from implementing
the forecasting and clustering algorithms. The dashboards with the forecasting results allow seeing
information disaggregated by customers and categories. The clustering dashboards present a
comparison between the groups assigned to the TSlearn categories and the original grouped categories.

Figure 6 shows an example of the dashboards developed for result visualization corresponding to
descriptive graphs with information per day each month. The upper left graph shows consumption per
day for Acorn categories. The lower-left graph presents the same information for grouped categories.
The right side shows the average consumption values by grouped categories and tariff program, while
the lower-right graph presents consumption by day for each tariff program.
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Figure 6. Descriptive analytics dashboard—Day of the month.In this way, information with different
temporal granularities (hour, day, month), different household groups (acorn or grouped categories, Std
or ToU households), analysis for specific events (holidays vs. business days), correlations with external
variables (temperature, humidity, light hours), and comparisons with other types of results (groups
assigned by the clustering algorithm and electricity consumption forecasting) were made available.

Throughout Section 5, we present some other graphs and dashboards designed for displaying
results. The main contribution of the data visualization stage, which is transversal to tasks of descriptive
or predictive analytics, is to facilitate the interpretation of results obtained when treating the information.
Then end users can show knowledge that is not perceptible in the first instance and identify some
trends or behaviors of interest quickly.

Below, we detail the results obtained in the implementation of the data analytics stages.

5. Data Analytics Results

This section presents the results of the data analytics tasks that we developed: descriptive analytics
and predictive analytics that included clustering and forecasting algorithms.

5.1. Descriptive Analytics

Figure 7 shows the energy consumption per hour of two households (a) with a standard tariff
(Std) and (b) with dynamic time of use (ToU), both on 13 April 2013. The blue line presents energy
consumption (kWh), and the orange line corresponds to the tariff value (GBX/kWh), which is more
expensive from 17 to 22 h.
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Figure 7. Household energy consumption: (a) metering with a standard tariff and (b) metering with a
dynamic time of use.

While the customers with the standard tariff do not modify their consumption in these hours,
customers with ToU tariff reduces the consumption sharply for the same period. Reduction of energy
consumption through client awareness is one of the objectives of a demand response program.

Table 3 presents a summary of the consumption data of the grouped categories and their tariff
program. The table also presents a column with the percentage difference between the consumption of
users with Std and ToU tariffs.

Table 3. Data summary of average energy consumption per grouped categories and tariff program
for 2013.

Affluent Comfortable Adversity

Std ToU Percent
Reduction Std ToU Percent

Reduction Std ToU Percent
Reduction

Average consumption per
day (kWh) 15.92 13.42 15.70% 10.63 9.67 9.03% 7.72 6.95 9.97%

Maximum consumption
per day (kWh) 26.38 20.29 23.09% 16.96 15.07 11.14% 12.42 15.9 −28.02%

Minimum consumption
per day (kWh) 6.02 3.295 45.27% 7.36 6.11 16.98% 5.53 2.50 54.79%

Average consumption per
workday (kWh) 15.55 13.36 14.08% 10.44 9.53 8.72% 7.49 6.82 8.95%

Average consumption on
Sundays (kWh) 16.69 14.46 13.36% 11.25 10.24 8.98% 8.1 7.58 6.42%

Average consumption on
holidays (kWh) 17.71 15.77 10.95% 11.17 10.08 9.76% 7.99 7.27 9.01%

Average conception per
month (kWh) 484.52 415.48 14.25% 324.22 294.47 9.18% 232.68 212.61 8.63%

Maximum consumption
per hour (kWh) 1.79 1.62 9.50% 1.35 1.25 7.41% 1.05 0.93 11.43%

Time of day of maximum
consumption 18 17 17 17 17 17

Number of Users 255 76 3253 874 883 157
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Table 3 shows that customers with the ToU tariff program have a lower energy consumption,
around 12%, than customers with the Std tariff. This difference between consumption shows the
effectiveness of the demand response program implemented by the low carbon London program. It
shows a change in the consumption patterns of the users who participated in the program through
incentive/penalties in the tariff schemes, as described above. Furthermore, we can see how the most
considerable percentage differences are in the affluent category, while the smallest percentages are in
the adversity category. This behavior might be because users in the affluent group can economically
perceive a more significant reduction in payment since they have a much higher average consumption
than the adversity group. We can observe that, in the case of the adversity category, the indicator of
maximum consumption per day shows an increase instead of a reduction in ToU users compared to
Std users. However, the other indicators do show a decrease, although less than that observed for the
affluent category. Since this is a maximum value, this increase may be due to isolated data that does
not necessarily represent the generality of the adversity category. Instead, average values describe the
regular behavior of users in each category.

There are also some other exciting findings in households’ consumption patterns. For example, a
utility may find it useful to detail the consumption difference between a working day and a holiday, as
observed in Figure 8.
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Figure 8. Energy consumption on holiday days (thin) versus workdays (thick): (a) year 2013 consumption,
(b) August 2013 consumption.

Figure 8a shows that average daily consumption on holidays (thin bars) was higher than on
workdays (thick bars) in 2013. However, if we focus only on August 2013, as shown in Figure 8b, the
graph shows an inverse behavior. It may be due to households’ occupancy during months that are
generally related to the vacation season and the temperature in the summer season, as observed in
Figure 9.
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Figure 9. Energy consumption versus temperature: (a) scatter plot and (b) time-line plot.

Regarding weather variables, there were two of them with an evident relation with households’
consumption, temperature, and light hours per day. Figure 9a presents the relation between electricity
consumption versus temperature per day in 2013. In addition to the inverse relationship identified
between energy consumption and average temperature, Figure 9b shows that, along with the winter
season, energy consumption reaches higher values. Something similar happens with the average light
hours per day, as shown in Figure 10.
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Figure 10 presents electricity consumption per day vs. light hours for each day of 2013. There is
an inverse relationship between the light hours and energy consumption with a hysteresis noted in
Figure 10a. Thin points represent consumptions measured during the first semester of the year, and
thick points correspond to the last semester of the year for each of the three grouped categories.

5.2. Predictive Analytics—Clustering

For this task, we used the Silhouette score to measure the quality of the clustering exercise. This
value varies from −1 to 1. A Silhouette score = 1 means that the clusters are well-differentiated
or segmented and that elements inside each group are similar or closer to each other. The
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standard deviation of the Silhouette scores in the 50 experiments was 0.0049, which indicates
algorithm repeatability.

The results of the clustering algorithm are presented below in Table 4.

Table 4. Result summary of the k-means clustering algorithm.

Indicator Value

Number of clusters 3
Number of features 24 1

Objects in dataset 5509
Number of experiments 50
Average silhouette score 0.7815

σ Silhouette score 0.0049
Execution time 5 min 27 s
1 Corresponding to each hour of the day.

Figure 11 presents the difference in the electricity consumption scales of the groups obtained with
the TSlearn library when compared with the original grouped categories. The left side of the graph
shows the average consumption per hour (a), day of the month (b), and month of the year (c) for the
grouped categories. The right side of the graph correspondingly shows the average consumption per
hour (d), day of the month (e), and month of the year (f) for the TSlearn categories. Due to the high
Silhouette score obtained with the implemented clustering algorithm, it is possible to see a greater
separation between TSlearn categories than the separation in the clusters of grouped categories.

Sensors 2020, 20, x FOR PEER REVIEW 19 of 27 

 

Table 4. Result summary of the k-means clustering algorithm. 

Indicator Value 
Number of clusters 3 
Number of features 241 

Objects in dataset 5509 
Number of experiments 50 
Average silhouette score 0.7815 

σ Silhouette score 0.0049 
Execution time 5 min 27 sec 

1 Corresponding to each hour of the day. 

Figure 11 presents the difference in the electricity consumption scales of the groups obtained 
with the TSlearn library when compared with the original grouped categories. The left side of the 
graph shows the average consumption per hour (a), day of the month (b), and month of the year (c) 
for the grouped categories. The right side of the graph correspondingly shows the average 
consumption per hour (d), day of the month (e), and month of the year (f) for the TSlearn categories. 
Due to the high Silhouette score obtained with the implemented clustering algorithm, it is possible 
to see a greater separation between TSlearn categories than the separation in the clusters of grouped 
categories. 

Grouped Categories TSLearn Categories 

 
(a) (d) 

(b) (e) 

 
(c) (f) 

 
Figure 11. Energy consumption for grouped categories (a–c) vs. TSlearn categories (d–f). Figure 11. Energy consumption for grouped categories (a–c) vs. TSlearn categories (d–f).



Sensors 2020, 20, 3289 20 of 27

Figure 12 shows relationships between energy consumption and temperature or light hours for
both grouped and TSlearn categories. Similarly, we can observe the difference between grouped
categories and TSLearn categories.
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the TSlearn categories. For example, not all users with the affluent grouped category were in the high
TSlearn category. Not all users from the comfortable category were in the medium category, and so on.
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However, as we said before, the idea behind proposing a new type of customer segmentation
is not to dismiss their initial classification, but to find value in the information provided by both
groupings. For instance, Figure 14 shows nine customers from the adversity category simultaneously
allocated to the high TSlearn category. For a utility, it might be helpful to know what is happening
with a customer who, belonging to an adversity category, registers high energy consumptions.
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Other clients that may be subject to verification are those that, belonging to an affluent category,
present low electricity consumption. These types of correlations can help to recognize, for example,
commercial or industrial activities (with high demand for electricity) installed in residential sectors,
imbalances in the nodes of the distribution network, or non-technical losses.

5.3. Predictive Analytics—Forecasting

Table 5 presents error measurements (R2 score, mean absolute error, root mean square error, and
mean square error) obtained in the forecasting of energy consumption for each case including the
average error measure obtained for all 5509 m and each category.

Table 5. Result summary for electricity forecasting algorithm.

Category R2 MAE (kWh) RMSE (kWh) MSE (kWh2)

Individual Meters 0.6585 0.1161 0.1240 0.0154
Affluent 0.9741 0.0301 0.0435 0.0019

Comfortable 0.9835 0.0145 0.0211 0.0004
Adversity 0.9732 0.0118 0.0160 0.0003

Figure 15 shows a time-series graph of the actual (blue line) and forecasted (orange line) hourly
electricity consumption for a meter (MAC00002). Similarly, Figure 16 shows the forecast consumption
for the comfortable group of grouped category.



Sensors 2020, 20, 3289 22 of 27

Sensors 2020, 20, x FOR PEER REVIEW 21 of 27 

 

However, as we said before, the idea behind proposing a new type of customer segmentation is 
not to dismiss their initial classification, but to find value in the information provided by both 
groupings. For instance, Figure 14 shows nine customers from the adversity category simultaneously 
allocated to the high TSlearn category. For a utility, it might be helpful to know what is happening 
with a customer who, belonging to an adversity category, registers high energy consumptions. 

 
Figure 14. Households from the adversity category with high energy consumption. 

Other clients that may be subject to verification are those that, belonging to an affluent category, 
present low electricity consumption. These types of correlations can help to recognize, for example, 
commercial or industrial activities (with high demand for electricity) installed in residential sectors, 
imbalances in the nodes of the distribution network, or non-technical losses. 

5.3. Predictive Analytics - Forecasting 

Table 5 presents error measurements (R2 score, mean absolute error, root mean square error, and 
mean square error) obtained in the forecasting of energy consumption for each case including the 
average error measure obtained for all 5509 meters and each category. 

Table 5. Result summary for electricity forecasting algorithm. 

Category R2 MAE [kWh] RMSE [kWh] MSE [kWh2] 
Individual Meters 0.6585 0.1161 0.1240 0.0154 

Affluent 0.9741 0.0301 0.0435 0.0019 
Comfortable 0.9835 0.0145 0.0211 0.0004 

Adversity 0.9732 0.0118 0.0160 0.0003 

Figure 15 shows a time-series graph of the actual (blue line) and forecasted (orange line) hourly 
electricity consumption for a meter (MAC00002). Similarly, Figure 16 shows the forecast consumption 
for the comfortable group of grouped category. 

 
Figure 15. Electricity forecasting for meter MAC000002. Figure 15. Electricity forecasting for meter MAC000002.Sensors 2020, 20, x FOR PEER REVIEW 22 of 27 

 

 
Figure 16. Electricity forecast for a comfortable category. 

In general, forecasting for the grouped categories has good performance indicators, unlike 
forecasting for individual meters. In that case, the performance was lower, considering that not all 
meters had the same amount of records available for the construction of their model. 

6. Conclusions and Upcoming Developments 

This paper presents the results of the application of big data and data analytics concepts in a 
case study with AMI data, taken from the smart energy meters in the city of London. The work 
developed shows the transformation of raw data into knowledge that allows rapid identification of 
trends, average and individual patterns, unusual events, and, in general, provides support for data-
driven decisions aimed at the best planning/operation of the distribution system. 

Data processing on a distributed platform allowed the consolidation of a data warehouse with 
more than 600 million records including aggregate information in different temporal granularities 
and categorical grouping. In addition, it includes external variables that are highly related to the 
patterns of consumption for about 5,500 households. 

Descriptive analysis showed how households that participated in a dynamic time of use (ToU) 
tariff program had lower electricity consumption, which indicates the positive impact that the 
implementation of a demand response program can have when supported by the installation of 
Advanced Metering Infrastructure (AMI). 

There is a high relation between variables like temperature and light hours with users’ electricity 
consumption. In addition, it is important to notice how these changes influence specific consumption 
habits. For example, the consumption between workdays is, in general, lower than during holidays. 
However, this behavior is different in the summer months, which may be related to seasonal changes 
in temperature. 

Given that the number of elements to be grouped was relatively small (5509 households) and 
we knew the number of clusters to group users (we aimed to get three groups), K-means was a fit 
candidate as a clustering algorithm. However, the potential application of this clustering task can 
grow up to hundreds of millions of users [13,14]. In those cases, there are other algorithms like batch 
k-means, spectral clustering, or Variational Bayesian Gaussian Mixture (VBGM), according to each 
case requirement [76]. 

The application of clustering techniques (TSlearn categories, consumption-based) allowed 
proposing a new household segmentation different from the one assigned initially (Grouped 
Categories, geo-demographic based). When compared, these two types of categories allowed 
identification of users with atypical patterns. It might represent industrial or commercial activities in 
residential sectors, technical or non-technical losses or even help planning better pricing schemes for 
demand response programs. 

The computational resources used for data processing (a distributed data processing cluster) 
facilitated the implementation of the case study from the role of a big data framework provider. For 
example, this includes consolidation into a distributed framework of a data warehouse. This 

Figure 16. Electricity forecast for a comfortable category.

In general, forecasting for the grouped categories has good performance indicators, unlike
forecasting for individual meters. In that case, the performance was lower, considering that not all
meters had the same amount of records available for the construction of their model.

6. Conclusions and Upcoming Developments

This paper presents the results of the application of big data and data analytics concepts in a case
study with AMI data, taken from the smart energy meters in the city of London. The work developed
shows the transformation of raw data into knowledge that allows rapid identification of trends, average
and individual patterns, unusual events, and, in general, provides support for data-driven decisions
aimed at the best planning/operation of the distribution system.

Data processing on a distributed platform allowed the consolidation of a data warehouse with
more than 600 million records including aggregate information in different temporal granularities and
categorical grouping. In addition, it includes external variables that are highly related to the patterns
of consumption for about 5,500 households.

Descriptive analysis showed how households that participated in a dynamic time of use (ToU) tariff
program had lower electricity consumption, which indicates the positive impact that the implementation
of a demand response program can have when supported by the installation of Advanced Metering
Infrastructure (AMI).

There is a high relation between variables like temperature and light hours with users’ electricity
consumption. In addition, it is important to notice how these changes influence specific consumption
habits. For example, the consumption between workdays is, in general, lower than during holidays.
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However, this behavior is different in the summer months, which may be related to seasonal changes
in temperature.

Given that the number of elements to be grouped was relatively small (5509 households) and
we knew the number of clusters to group users (we aimed to get three groups), K-means was a fit
candidate as a clustering algorithm. However, the potential application of this clustering task can
grow up to hundreds of millions of users [13,14]. In those cases, there are other algorithms like batch
k-means, spectral clustering, or Variational Bayesian Gaussian Mixture (VBGM), according to each
case requirement [76].

The application of clustering techniques (TSlearn categories, consumption-based) allowed
proposing a new household segmentation different from the one assigned initially (Grouped Categories,
geo-demographic based). When compared, these two types of categories allowed identification of
users with atypical patterns. It might represent industrial or commercial activities in residential
sectors, technical or non-technical losses or even help planning better pricing schemes for demand
response programs.

The computational resources used for data processing (a distributed data processing cluster)
facilitated the implementation of the case study from the role of a big data framework provider.
For example, this includes consolidation into a distributed framework of a data warehouse. This
consolidation, which involved managing millions of records, was a simple but time-consuming task.
Future work might include a test benchmark to evaluate the performance of this type of application,
depending on the computational infrastructure detected.

The forecasting task presents one of the main challenges in the analysis of AMI data. In this case
study, the implemented algorithm presented significantly low error indicators, even in the case of
individual meters. The algorithms implemented in this case study are not mandatory. Nevertheless,
the results show the potential of combining an autoregressive algorithm (NARX) with an ensemble of
learning entities (Random Forest) and libraries specialized in time series data (fireTS) as part of the
data life cycle for this type of application.

For future work, we propose a more sophisticated development of the stages of visualization and
access. As mentioned in Section 2, a more ambitious implementation of a data analytics application for
a utility may require result visualization for people with different roles within the company. Thus,
visualization and access must explicitly support the work of each role. Some works from Section 2
mention several approaches to these issues [59,61].

Furthermore, the inclusion of a sentimental analysis of information might be useful. That is the
correlation of electricity consumption with events that can show trends in social networks: international
impact news, world-order events such as Olympic Games, FIFA World Cups, and others.
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